--- title: "ImageCollection" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{ImageCollection} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = FALSE ) ``` `rgeeExtra` serves as a wrapper for the Python package named `eeExtra`. The creation of `eeExtra` was driven by a need to consolidate various third-party GEE Javascript and Python packages and projects found on GitHub in the same programming language and style, avoiding dependencies. `rgeeExtra` ensures a seamless integration of `eeExtra` within the R ecosystem ```{r setup} library(rgeeExtra) library(rgee) ee_Initialize() # Initialize the Google Earth Engine API connection extra_Initialize() # Load the extended functionalities of rgeeExtra ``` ## **Features for `ee$ImageCollection`** `ee$ImageCollection` objects in Earth Engine represent collections of satellite images, allowing for comprehensive analysis over time and space. The `rgeeExtra` package enhances these functionalities within R, providing tools for diverse and complex image collection processing and analysis. ### **1. Automated Preprocessing** The `ee$ImageCollection$Extra_preprocess` function streamlines preprocessing of Earth Engine ImageCollections. It efficiently performs tasks like cloud masking and pixel value decompression, converting integer pixels to float point numbers, essential for accurate and clear image analysis. ```{r} # Load and preprocess Sentinel-2 SR image collection. ic <- ee$ImageCollection$Dataset$COPERNICUS_S2_SR %>% ee$ImageCollection$Extra_preprocess() # Define visualization parameters for RGB bands. visParams <- list( bands = c("B4","B3","B2"), min = 0, max = 0.4, gamma = 1.5 ) # Display 100th image from preprocessed collection on map. Map$setCenter(lon = 35.19, lat = 46.14, zoom = 10) Map$addLayer(ic[[100]], visParams = visParams, "Preprocessed image") ```
### **2. Retrieve offset parameter** The `ee$ImageCollection$Extra_getOffsetParams` function is essential for accessing offset parameters in `ee$ImageCollection` objects, crucial for understanding Earth Engine's lossless compression, encapsulated in the equation `IMG_Float_Values = scale * IMG_Integer_Values + offset`. This aids in precise data conversion and analysis. ```{r} # Get offset parameters from NASA IMERG V06 image collection. offset_params <- ee$ImageCollection("NASA/GPM_L3/IMERG_V06") %>% ee$ImageCollection$Extra_getOffsetParams() # Display offset parameters for each band. offset_params # Result: # $HQobservationTime # [1] 0 # $HQprecipSource # [1] 0 # $HQprecipitation # [1] 0 # $IRkalmanFilterWeight # [1] 0 # $IRprecipitation # [1] 0 # $precipitationCal # [1] 0 # $precipitationUncal # [1] 0 # $probabilityLiquidPrecipitation # [1] 0 # $randomError # [1] 0 ``` ### **3. Retrieve scale parameter** The `ee$Image$Extra_getScaleParams` function in Earth Engine is essential for data accuracy, extracting scale parameters for each band of an ee$Image. This supports the conversion of integer pixel values to floating-point numbers, crucial for data integrity. The core equation for this process is: `IMG_Float_Values = scale * IMG_Integer_Values + offset`, ensuring precise data representation. ```{r} # Retrieve scale parameters for the NASA IMERG V06 collection. scale_params <- ee$ImageCollection("NASA/GPM_L3/IMERG_V06") %>% ee$Image$Extra_getScaleParams() # Display scale parameters for each band in the image. scale_params # Result: # $HQobservationTime # [1] 1 # $HQprecipSource # [1] 1 # $HQprecipitation # [1] 1 # $IRkalmanFilterWeight # [1] 1 # $IRprecipitation # [1] 1 # $precipitationCal # [1] 1 # $precipitationUncal # [1] 1 # $probabilityLiquidPrecipitation # [1] 1 # $randomError # [1] 1 ``` ### **4. Automatic decompression** Earth Engine applies a straightforward lossless compression method: Floating-point image values `IMG_Float_Values` are calculated from integer image values (IMG_Integer_Values) using the formula `IMG_Float_Values = scale * IMG_Integer_Values + offset`. The `ee$Image$Extra_scaleAndOffset` method is used to convert integer pixel values back to floating-point numbers. ```{r} # Adjust Sentinel-2 SR images for scale and offset. adjusted_images <- ee$ImageCollection("COPERNICUS/S2_SR") %>% ee$ImageCollection$Extra_scaleAndOffset() ``` ### **5. Retrieve STAC metadata** The `ee$ImageCollection$Extra_getSTAC` function is designed to access STAC (SpatioTemporal Asset Catalog) metadata from `ee$ImageCollection` objects. This capability is crucial for obtaining comprehensive metadata for each band, enhancing data understanding and usability in Earth Engine applications. ```{r} # Retrieve STAC metadata from NASA's IMERG V06 image collection. stac_metadata <- ee$ImageCollection("NASA/GPM_L3/IMERG_V06") %>% ee$ImageCollection$Extra_getSTAC() # Description of the dataset stac_metadata$description # Spatial extent of the dataset stac_metadata$extent$spatial$bbox # Temporal interval of the dataset stac_metadata$extent$temporal$interval # Data Provider IDs stac_metadata$`gee:provider_ids` # Terms of use of the dataset stac_metadata$`gee:terms_of_use` # Type of the collection stac_metadata$`gee:type` # Dataset ID stac_metadata$id # Keywords associated with the dataset stac_metadata$keywords # License information stac_metadata$license # Links to additional resources and information stac_metadata$links # Providers of the dataset stac_metadata$providers # Citation information stac_metadata$`sci:citation` # Digital Object Identifier (DOI) stac_metadata$`sci:doi` # STAC version and extensions stac_metadata$stac_version stac_metadata$stac_extensions # Summaries of band information and visualizations stac_metadata$summaries$`eo:bands` stac_metadata$summaries$`gee:visualizations` # Citation information stac_metadata$`sci:citation` # Digital Object Identifier (DOI) stac_metadata$`sci:doi` # STAC version and extensions stac_metadata$stac_version stac_metadata$stac_extensions # Summaries of band information and visualizations stac_metadata$summaries$`eo:bands` stac_metadata$summaries$`gee:visualizations` ``` ### **6. Names of properties** The `names` function is designed to extract property names from an Earth Engine ImageCollection object `ee$ImageCollection`. This functionality is essential for identifying and accessing specific properties associated with an image collection, thereby enhancing data management and analysis in Earth Engine. ```{r} # Filter Sentinel-2 Surface Reflectance images for Jan 1-2, 1999 ic <- ee$ImageCollection("COPERNICUS/S2_SR") %>% ee$ImageCollection$filterDate("2018-01-01", "2019-01-02") # Output property names of the ImageCollection names(ic) # Output: # [1] "date_range" "period" # [3] "system:visualization_0_min" "type_name" # [5] "keywords" "system:visualization_0_bands" # [7] "thumb" "description" # [9] "source_tags" "system:id" # [11] "visualization_0_max" "provider_url" # [13] "title" "sample" # [15] "tags" "system:visualization_0_max" # [17] "product_tags" "provider" # [19] "visualization_0_min" "system:version" # [21] "system:visualization_0_name" "visualization_0_name" # [23] "visualization_0_bands" ``` ### **7. Extract or replace parts** The `[[` method allows for extraction or replacement of specific parts within an `ee$ImageCollection`. This function is pivotal for selectively accessing or modifying images based on their index in Earth Engine. ```{r} # Load TerraClimate dataset for 2001 terraclimate <- ee$ImageCollection("IDAHO_EPSCOR/TERRACLIMATE") %>% ee$ImageCollection$filterDate("2001-01-01", "2002-01-01") # Define temperature Vis parameters maximumTemperatureVis <- list( min = -300.0, max = 300.0, palette = c( '1a3678', '2955bc', '5699ff', '8dbae9', 'acd1ff', 'caebff', 'e5f9ff', 'fdffb4', 'ffe6a2', 'ffc969', 'ffa12d', 'ff7c1f', 'ca531a', 'ff0000', 'ab0000' ) ) # Configure map, extract property names, and add original temperature layer Map$setCenter(71.72, 52.48, 2) tnames <- names(terraclimate[[2]]) m1 <- Map$addLayer(terraclimate[[2]][["tmmx"]], maximumTemperatureVis) # Modify the second image (scale by 1.4), keep original names, and add to map terraclimate[[2]] <- terraclimate[[2]]*1.4 names(terraclimate[[2]]) <- tnames m2 <- Map$addLayer(terraclimate[[2]][["tmmx"]], maximumTemperatureVis) m1 | m2 ```
### **8. Complete GIF Toolkit for Earth Engine** #### **Create a GIF** The `ee_utils_gif_creator` function generates a GIF from an Earth Engine ImageCollection, ideal for RGB or RGBA images. It's a convenient wrapper around `ee$ImageCollection$getVideoThumbURL`, allowing for customized animations through visualization parameters. This tool is perfect for visualizing temporal changes or patterns in spatial data. #### **Add text to a GIF** The `ee_utils_gif_annotate` function enhances GIFs by adding customizable text. It acts as a wrapper for `image_annotate`, allowing users to specify text properties like location, rotation, size, font, style, and color. This function is ideal for labeling or providing context in GIF visualizations, accommodating various text attributes to suit different presentation needs. #### **Write a GIF** The `ee_utils_gif_save` function, a wrapper for image_write from the `magick` package, efficiently writes a `magick-image` object as a GIF file. It offers options like format, quality, depth, and more, allowing for detailed customization of the output GIF, making it ideal for saving and sharing Earth Engine visualizations. ```{r} # Process the JRC/GSW1_1/YearlyHistory image collection: calculate the yearly image, apply despeckling, and set the 'year' property. col <- ee$ImageCollection("JRC/GSW1_1/YearlyHistory")$map(function(img) { year <- img$date()$get("year") yearImg <- img$gte(2)$multiply(year) despeckle <- yearImg$connectedPixelCount(15, TRUE)$eq(15) yearImg$updateMask(despeckle)$selfMask()$set("year", year) }) # Function to reverse the order of image collection based on 'year'. appendReverse <- function(col) col$merge(col$sort('year', FALSE)) # ------------------------------ # 1. Basic Animation - Ucayali, Peru # ------------------------------ # Define color codes for the background and river pixels. bgColor = "FFFFFF" # White for background. riverColor = "0D0887" # Blue for river. # Create the dataset for animation. annualCol = col$map(function(img) { img$unmask(0)$ visualize(min = 0, max = 1, palette = c(bgColor, riverColor))$ set("year", img$get("year")) }) basicAnimation <- appendReverse(annualCol) # Set video parameters like dimensions, region, and frame rate. aoi <- ee$Geometry$Rectangle(-74.327, -10.087, -73.931, -9.327) videoArgs = list( dimensions = 600, # Maximum dimension in pixels. region = aoi, framesPerSecond = 10 ) # Generate, annotate, and save the GIF animation. animation <- ee_utils_gif_creator(basicAnimation, videoArgs, mode = "wb") get_years <- basicAnimation$aggregate_array("year")$getInfo() animation %>% ee_utils_gif_annotate("Ucayali, Peru") %>% ee_utils_gif_annotate(get_years, size = 15, location = "+90+40", boxcolor = "#FFFFFF") %>% ee_utils_gif_annotate("created using {magick} + {rgee}", size = 15, font = "sans",location = "+70+20") -> animation_wtxt gc(reset = TRUE) ee_utils_gif_save(animation_wtxt, path = paste0(tempfile(), ".gif")) ```
### **9. Citation in publications** For academic and research purposes, `ee$ImageCollection$Extra_getCitation` retrieves the citation information of Earth Engine objects. This function is crucial for properly crediting the source of Earth Engine data in publications, providing a formatted citation string for reference. ```{r} # Fetching NASA/GPM_L3/IMERG_V06 image collection and retrieving its citation. citation <- ee$ImageCollection("NASA/GPM_L3/IMERG_V06") %>% ee$ImageCollection$Extra_getCitation() # Display the citation citation # Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, Jackson Tan (2019), # GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V06, # Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center # (GES DISC), Accessed: [Data Access Date], # [doi:10.5067/GPM/IMERG/3B-HH/06](https://doi.org/10.5067/GPM/IMERG/3B-HH/06) ``` ### **10. Get the Digital Object Identifier (DOI)** The `ee$ImageCollection$Extra_getDOI` function is designed to extract the Digital Object Identifier (DOI) from Earth Engine objects. This feature is essential for accessing permanent, unique identifiers of Earth Engine datasets, facilitating data traceability and sharing in research and publications. ```{r} # Retrieve and print the DOI for the NASA/GPM_L3/IMERG_V06 image collection. doi <- ee$ImageCollection("NASA/GPM_L3/IMERG_V06") %>% ee$ImageCollection$Extra_getDOI() doi # "10.5067/GPM/IMERG/3B-HH-L/06" ``` ### ***11. Get the temporal nearest image*** The `ee$ImageCollection$Extra_closest` function identifies the closest image to a specified date within an Earth Engine `ee$ImageCollection`. It filters the collection within a user-defined tolerance range and unit, optimizing the search process, especially in collections with dense temporal data ```{r} # Define ROI with specified longitude and latitude. roi <- ee$Geometry$Point(c(-77.232, -9.276)) # Retrieve closest Sentinel-2 SR image to 2021-08-15 within 5 days for ROI. ic <- ee$ImageCollection$Dataset$COPERNICUS_S2_SR %>% ee$ImageCollection$filterBounds(roi) %>% ee$ImageCollection$Extra_closest("2021-08-15", 5, "day") image <- ic[[1]] # Set visualization parameters for the image. visParams <- list( bands = c("B11","B8","B2"), min = 250, max = 9090, gamma = 1.5 ) # Retrieve the unique system identifier (system:id) of the image. systemId <- image$get("system:id")$getInfo() # Expected output: "COPERNICUS/S2_SR/20210816T152639_20210816T152842_T18LTQ" # Display image on map centered at ROI. Map$centerObject(roi, zoom = 10) Map$addLayer(image, visParams = visParams) ```